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Abstract

We discuss the ivcrc module, which implements an instrumental variables (IV) estimator for

the linear correlated random coefficients (CRC) model. The CRC model is a natural gener-

alization of the standard linear IV model that allows for endogenous, multivalued treatments

and unobserved heterogeneity in treatment effects. The estimator implemented by ivcrc uses

recent semiparametric identification results that allow for flexible functional forms and permit

instruments that may be binary, discrete, or continuous. The ivcrc module also allows for

the estimation of varying coefficients regressions, which are closely related in structure to the

proposed IV estimator. We illustrate use of ivcrc by estimating the returns to education in

the National Longitudinal Survey of Young Men.
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1 Introduction

In this paper we describe the ivcrc module for Stata, which implements a linear instrumental

variables (IV) estimator for the correlated random coefficients (CRC) model. The CRC model

relaxes the constant effects assumption of the standard linear IV model by allowing for random

coefficients, which capture unobserved heterogeneity in the causal effect of the endogenous variables,

X, on the outcome variable, Y . Heckman and Vytlacil (1998) and Wooldridge (1997, 2003, 2008)

showed that if there is no unobserved heterogeneity in the way the instrument, Z, affects the

endogenous variables, X, then the usual linear IV estimator (e.g., ivregress) will estimate the

mean of the random coefficients. However, this assumption is uncomfortably asymmetric: treatment

effects can be unobservably heterogeneous, but instrument effects cannot.

Masten and Torgovitsky (2016) address this drawback by showing how to allow for heterogeneity

in the relationship between Z and X. The identification arguments developed there allow for the

instrument to be binary, discrete, or continuous, and depend only on familiar, low-level assumptions

about exclusion, exogeneity, and instrument relevance. The arguments also lead to a semiparametric

estimator that does not suffer from the curse of dimensionality. In Section 2, we briefly review the

identification results and estimation approach developed in Masten and Torgovitsky (2014, 2016).

The ivcrc module implements their proposed estimator.

The structure of the estimator turns out to be quite similar to a common estimator for the

varying coefficient models (e.g., Fan and Zhang 2008; Park, Mammen, Lee, and Lee 2015). We

have written ivcrc to include a standard estimator for these models as a special case. We briefly

describe varying coefficient models in Section 3.

In Section 4 we discuss syntax and options for the ivcrc module. In Section 5 we illustrate

the module by estimating the return to schooling with a widely-used extract from the National

Longitudinal Survey of Young Men. For further examples, see Gollin and Udry (2020), who used

the ivcrc module to estimate agricultural production functions, Morales-Mosquera (2019), who

used it to estimate the effects of police infrastructure in Colombia, and Masten and Torgovitsky

(2014), who used the estimator to revisit Chay and Greenstone’s (2005) analysis of the effect of air

pollution on housing prices.

2 The Correlated Random Coefficients Model

2.1 Model and Motivation

The simplest form of the model estimated by ivcrc has the outcome equation

Y = B0 +B1X, (1)
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where Y is an observed outcome, X is an observed explanatory variable, and both B0 and B1

are unobserved random variables. The model is described as a random coefficients model due to

the treatment of B1 as an unobserved random variable. Economists have long been interested in

such models (Wald 1947; Hurwicz 1950; Rubin 1950; Becker and Chiswick 1966). To allow for

endogeneity, X is permitted to be arbitrarily dependent with both B0 and B1. This feature makes

the model one of correlated random coefficients.1

It is helpful to compare (1) with the outcome equation for the textbook linear model:

Y = α+ βX + U, (2)

where α and β are fixed (deterministic) parameters, and U is an unobservable random variable

with mean zero. This model also allows for endogeneity by permitting X to be dependent with U .

The distinction between U in (2) and B0 in (1) is not important, since one can view B0 as being

equal to α + U . Rather, the important difference between (2) and (1) is that the coefficient on X

in (2), i.e. β, is deterministic, whereas the coefficient on X in (1), i.e. B1, is a random variable.

The interpretation is that in (2) the causal effect of X on Y is the same for all agents, whereas

in (1) it is a random variable that can be dependent with X. This important difference allows for

heterogeneous treatment effects and selection on the gain of the sort described in Heckman, Urzua,

and Vytlacil (2006b). One can view (2) as a special case of (1) with a degenerate B1.

Textbook discussions of (2) show that β is identified if there exists an instrument Z such that

Cov(U,Z) = 0 and Cov(X,Z) 6= 0. The corresponding IV estimator can be implemented in Stata

with the ivregress command. However, if the data is in fact generated by (1), then this estimator

converges to

Cov(Y,Z)

Cov(X,Z)
= E

[
B1 ×

X(Z −E(Z))

E[X(Z −E(Z))]

]
. (3)

This quantity is difficult to interpret in general (Garen 1984; Wooldridge 1997; Heckman and

Vytlacil 1998). It is a weighted average of the causal effect of X on Y ; that is, a weighted average

of B1. The weights, however, can be both positive and negative. It generally does not equal the

unweighted average of B1 unless B1 is independent of (X,Z), which would rule out the type of

selection on the gain scenario described in Heckman et al. (2006b).

A natural question is whether there are additional assumptions under which the IV estimator

provided by ivregress would consistently estimate a parameter that is easier to interpret. For

example, are there additional conditions under which this estimator converges to the average partial

effect, E[B1]? Heckman and Vytlacil (1998) and Wooldridge (1997, 2003, 2008) show that there are

1 This terminology seems to have been first used by Heckman and Vytlacil (1998). In earlier work, some authors,
for example, Conway and Kniesner (1991), had used the adjective “correlated” to describe an unrestricted correlation
structure between the random coefficients on different explanatory variables. Our model also allows for this.
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indeed such conditions, namely, the assumption that the causal effect of Z on X is homogenous.

While convenient, this type of homogeneity assumption is uncomfortably asymmetric. It enables

the additional heterogeneity in equation (1) relative to equation (2) only by assuming away the

same type of heterogeneity in the analogous relationship between Z and X.2

2.2 Identification and Estimation by Conditional Linear Regression

Given these negative results, it is worthwhile to consider estimators other than ivregress. The

ivcrc module provides such an estimator. This estimator is based on the following control function

argument, which is developed more formally in Masten and Torgovitsky (2016).3

Suppose that there exists an observable variable R such that X ⊥⊥ (B0, B1) | R. The variable R

is a “control function” (or sometimes, and more loosely, a “control variable”) because it controls

for the endogeneity in X. That is, while X is endogenous in the sense of being unconditionally

dependent with (B0, B1), it is exogenous after conditioning on the control function R. In practice,

R is constructed from the instrument; we explain the derivation and construction of R in more

detail in Section 2.3.

Given the availability of a variable R with this property, it is straightforward to see that one

could consistently estimate the vector β(r) ≡ E[B | R = r] where B ≡ [B0, B1]
′ by a linear

regression of Y on X conditional on R = r. Letting W ≡ [1, X]′ so that Y = W ′B, one has

E[WW ′ | R = r]−1 E[WY | R = r] = E[WW ′ | R = r]−1 E[WW ′B | R = r] = β(r), (4)

where the second equality uses the assumption that B is independent of X (and hence W ), con-

ditional on R. In order for this argument to work, it must be the case that E[WW ′ | R = r]

is invertible, which is the usual condition of no perfect multicollinearity, but now conditional on

R = r. Intuitively, there must still be some variation left in X after conditioning on R = r. As-

suming that this is the case for all r in the support of R, one can average up the linear regression

estimands on the right-hand side of (4) to obtain E[B] ≡ E[β(R)], and hence the average partial

effect of X on Y , i.e. E[B1].

This identification argument suggests an estimator given by an average of conditional ordinary

least squares (OLS) estimators. The conditioning is incorporated by applying kernel weights to

each observation, where the weights reflect the distance of R from r. More concretely, given a

2 An influential literature started by Imbens and Angrist (1994), Angrist and Imbens (1995), Angrist, Imbens,
and Rubin (1996), and Angrist, Graddy, and Imbens (2000) has provided conditions under which the IV estimator
provided by ivregress can be interpreted as a local average treatment effect (LATE) or a weighted average of various
LATEs. While related, these arguments are nonparametric, and in particular do not use the linearity in X of the
CRC model.

3 This paper builds on a large literature on control functions, including Heckman (1979), Heckman and Robb
(1985), Smith and Blundell (1986), Blundell and Powell (2004), Florens, Heckman, Meghir, and Vytlacil (2008), and
Imbens and Newey (2009), among many others.
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sample {Yi, Xi, Ri}ni=1, a conditional regression estimator of Y on W near R = r is given by

β̂(r) ≡

(
n∑

i=1

khi (r)WiW
′
i

)−1( n∑
i=1

khi (r)WiYi

)
, (5)

where khi (r) ≡ h−1K((Ri − r)/h) with K a second-order kernel function and h > 0 a bandwidth

parameter.

The conditional OLS estimator (5) displays the same type of bias-variance tradeoff that is

familiar from nonparametric kernel regression. As h → ∞, khi (r) → K(0) for all i, so that β̂(r) is

just the estimator from a usual linear regression of Y on W . We expect this estimator to be biased

for E[B] if X is endogenous. Given the control function assumption, this bias disappears as h→ 0,

but at the cost of higher variance in using fewer effective observations in computing β̂(r). Balancing

these two concerns entails using fewer than n effective observations, and as a consequence β̂(r) will

have a slower-than-parametric rate of convergence for β(r).

As a parameter of interest, β(r) has a clear interpretation as the average partial effect of X on

Y , conditional on R = r. Variation in this parameter as a function of r indicates treatment effect

heterogeneity. We can average β(R) for R in some known set R to obtain the average partial effect

for the subpopulation with R ∈ R. A natural estimator of this average is given by

β̂R =

∑n
i=1 β̂(Ri)1[Ri ∈ R]∑n

i=1 1[Ri ∈ R]
, (6)

where 1[·] is the indicator function that is 1 if · is true and 0 otherwise. At least in principle, β̂R can

be estimated at the parametric
√
n rate (see Masten and Torgovitsky 2014, or, for a more general

discussion, Newey 1994). If the local Gram matrix is invertible for (almost) every r in the support

of R, then R can be taken to be the entire support of R, so that (6) becomes an estimator of the

unconditional average of B.

A more general version of (1) is

Y = B0 +

dx∑
j=1

BjXj +

d1∑
j=1

Bdx+jZ1j ≡W ′B, (7)

where X is now a dx–dimensional vector of potentially endogenous explanatory variables and Z1 ∈
Rd1 is a vector of exogenous explanatory variables. For notation, we combine these variables and

their coefficients together with the constant term as W ≡ [1, X ′, Z ′1]
′ and B. We rename the

excluded exogenous variable as Z2, and combine the exogenous variables (included and excluded

instruments) together into a vector Z = [Z ′1, Z
′
2]
′. The required condition on the control function

is now that W ⊥⊥B | R, so that both X and Z1 are exogenous after conditioning on R. Given this

condition, the identification argument (4) and the estimators (5) and (6) follow exactly as before.
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2.3 Estimation of the Control Function

We have shown how a control function, R, can be used to estimate interesting parameters in a

CRC model, but we have not yet explained how one can find or construct such a control function.

The most common approach is to assume that for each j = 1, . . . , dx, there exists a function hj and

unobservables V ≡ [V1, . . . , Vdx ]′ ∈ Rdx such that

Xj = hj(Z, Vj) for each j, (8)

where hj(z, ·) is strictly increasing for each z. As shown by Imbens and Newey (2009) and Masten

and Torgovitsky (2016), if (B, V ) ⊥⊥ Z, then R ≡ [R1, . . . , Rdx ]′ is a valid control function, where

Rj ≡ FXj |Z(Xj | Z) and FXj |Z(xj | z) ≡ P[Xj ≤ xj | Z = z] is the population conditional

distribution function of Xj , given Z. The components Rj of this control function can be interpreted

as providing the conditional rank (relative position) of Xj given Z. The ivcrc module is written

primarily with this choice of control function in mind, although the user can provide a different

choice if desired. In that case, the estimator can be viewed as estimating the varying coefficient

model discussed in the next section.

We refer to Masten and Torgovitsky (2016) for more theoretical details on the interpretation

and restrictiveness of maintaining (8); see also Chernozhukov and Hansen (2005) and Torgovitsky

(2015). Here we focus on the implications for implementing (4) and (5) with R as the resulting

conditional ranks. The first implication is that it may be useful to make a distinction between

different components of the endogenous variables, X. For example, if X2 is a deterministic trans-

formation of X1, say X2 = X2
1 , then X2 is also fully determined by R1. As a result, there is no

need to separately estimate and condition on R2. In the terminology of Masten and Torgovitsky

(2016), X1 is a basic endogenous variable, and X2 = X2
1 is a derived endogenous variable.

Derived endogenous variables require special treatment, since they appear as part of the vector

of explanatory variables W , but are not included as part of the conditioning variables Z in the

definition of Rj ≡ FXj |Z(Xj | Z). More formally, a component Xj of X is a derived endogenous

variable if it can be written as Xj = gj(X−j , Z) for some known function gj . Interaction terms and

other nonlinear functions form the primary examples of derived endogenous variables. The ivcrc

module handles derived endogenous variables using the dendog option discussed in Section 4. The

empirical illustration in Section 5 provides an example of its use.

A second issue raised by this choice of R is that it is not directly observed in the data. Instead,

we need to estimate Rji = FXj |Z(Xji | Zi) in a first step for each basic endogenous variable Xj and

each observation i. The ivcrc module approaches this problem by estimating conditional quantile

functions and then inverting them using the pre-rearrangement operator studied by Chernozhukov,

Fernandez-Val, and Galichon (2010). This operator translates an estimator of a conditional quantile

function, say Q̂Xj |Z(· | z), into an estimator of a conditional distribution function through the

6



relationship

F̂Xj |Z(xj | z) =

∫ 1

0
1
[
Q̂Xj |Z(s | z) ≤ xj

]
ds. (9)

For estimating Q̂Xj |Z(s | z), the ivcrc module uses linear quantile regression (see e.g. Koenker,

2005) as implemented by Stata’s built-in qreg command. The generated regressors {R̂ji}ni=1 are

then constructed by substituting (Xji, Zi) into (9) for every i.

A third point that arises when using this choice of R is that (6) can be simplified when there

is only one basic endogenous variable. This is because R ≡ FX|Z(X | Z) is uniformly distributed

when X is continuous. As a result, the probability that R lands in any region R is known a priori

and does not need to be estimated. The population average of β(R), conditional on R ∈ R in this

case reduces to

βR = λ(R)−1
∫
R
β(r) dr, (10)

where λ(R) is the Lebesgue measure of the set R. When equation (10) holds, ivcrc estimates it

by substituting the (known) value of λ(R) and numerically approximating the integral
∫
R β̂(r) dr

that replaces β(r) with β̂(r).

A fourth point that is worth reemphasizing is that in order for (4) to exist, the Gram matrix

E[WW ′ | R = r] must be invertible. That is, there must not be perfect multicollinearity among

the regressors after conditioning on R = r. When using the conditional rank for R, conditioning on

R = r still leaves variation in the basic endogenous variables as long as the excluded instrument,

Z2, is appropriately dependent with X near its rth quantile. See Masten and Torgovitsky (2014,

2016) for a more detailed discussion of this point. A consequence for implementation is that it is

necessary to exclude from R regions over which this instrument relevance condition fails.

2.4 Bandwidth Selection

The ivcrc module implements automated bandwidth selection for h based on a rule-of-thumb

method proposed by Fan and Gijbels (1996). We first estimate E[Y | R = r,X = x] as a fourth

order polynomial in r, linearly interacted with x. We use this regression to produce estimates of

the second derivative of E[Y | R = r,X = x] with respect to r, which we denote by δ̂(r)x. The

rule-of-thumb bandwidth is then defined as

hROT ≡ 0.58

(
σ̂2∑n

i=1
1
2 δ̂(R̂i)Xi

)1/5

,

where σ̂2 is the homoskedastic error variance from the polynomial regression and the constant 0.58

is derived from the roughness for single-peaked kernels. See the discussion in Hansen (2021, Section
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19.9) for further details.

2.5 Statistical Inference

The asymptotic variance of β̂R needs to account for the statistical error involved in estimation of

the control function, R. Masten and Torgovitsky (2014) report this calculation, but the form of

the asymptotic variance is complicated and does not facilitate direct estimation. Fortunately, β̂R

is a relatively well-behaved estimator, so the bootstrap should be valid for approximating standard

errors and confidence intervals (see, e.g., Chen, Linton, and van Keilegom 2003). The ivcrc module

uses Stata’s built-in bootstrap routine for these purposes.

We evaluate the validity of the bootstrap using a small Monte Carlo simulation. The model is

(1) with a single endogenous variable, X. The relationship between X, Z, and V in (8) is specified

as

X = 0.3Z + 0.4ZV + V,

where Z is binary {0, 1} with equal probability, and V is normally distributed with mean 0.1 and

variance 0.2. The unobservables are related by

B0 = 0.3V + ε0 and B1 = 0.7V + ε1,

where ε0 and ε1 are normally distributed, independent of V , with means 0.2 and 0.45, and variances

0.2 and 1. The parameter values imply E[B0] = 0.23 and E[B1] = 0.52.

We implement the bootstrap on each of 1000 Monte Carlo replications with 250 bootstraps per

replication while using the rule-of-thumb bandwidth. We first consider a nominal level 5% test that

uses bootstrapped standard errors together with a normal approximation. We reject the true null

hypotheses E[B0] = .23, and E[B1] = 0.52 in 4.9% and 6.2% of replications, respectively. Then

we considered the coverage rate for a nominal 95% bootstrapped percentile confidence interval,

without exploiting normality. The confidence intervals covered the true values of E[B0] and E[B1]

in 94.5% and 94% of replications, respectively. We interpret these findings as providing evidence

that the bootstrap provides inference that is close to size-correct.

3 Varying Coefficient Models

The CRC model can be viewed as a special case of a larger class of models called varying coefficient

models. A simple example of this model is

Y = β0(S) + β1(S)X + U, (11)
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where Y is an observed outcome, S are observed covariates (sometimes called “effect modifiers”),

X is our primary observed covariate of interest, and U is an unobserved variable. Both β0(·) and

β1(·) are unknown, nonparametrically specified functions. Conditional on S, this is a parametric

model in X. But conditional on X, it is a nonparametric model in S. While it is unclear who first

proposed such models (e.g., see O’Hagan and Kingman 1978 for an early citation), their in-depth

study began with Cleveland, Grosse, and Shyu (1991) and Hastie and Tibshirani (1993). Fan and

Zhang (2008) and Park et al. (2015) provide recent reviews of this literature.

Given a sample {Yi, Xi, Si}ni=1, the local regression estimator (5) with Ri = Si is precisely the

Nadaraya-Watson (local constant) varying coefficient estimator; e.g., equation (2.1) of Park et al.

(2015). Cleveland et al. (1991) proposed a local linear estimator. Fan and Zhang (1999) study these

and other alternative estimators in detail. The asymptotic theory in Masten and Torgovitsky (2014)

extends that of the varying coefficient literature in two directions: (a) by allowing for S to be a

generated regressor and (b) by considering the asymptotic distribution of average coefficients, such

as E[β1(S)]. While the literature on varying coefficient models focuses on the functions β0(·) and

β1(·) themselves, the econometric models we consider motivate interest in these average coefficients

as well.

The ivcrc module can estimate varying coefficient models like (11) via the varcoef option.

See section 4 for details. This estimator allows all components of S to enter all coefficients. Park

et al. (2015) discuss estimators which allow one to impose the assumption that some components

of S enter some coefficients, but not others.

We conclude this section by briefly showing how the linear CRC model can be seen as a varying

coefficient model. For simplicity, we only consider the simple model (1). Write

Y = B0 +B1X

= E(B0 | R) + E(B1 | R)X + [(B0 −E(B0 | R)) + (B1 −E(B1 | R))X]

≡ β0(R) + β1(R)X + U.

By X ⊥⊥ (B0, B1) | R and the definition of U , E(U | R,X) = 0. Thus the linear CRC model is a

varying coefficient model with effect modifier R.

4 The ivcrc Module

The ivcrc module is available on the Statistical Software Components (SSC) archive and can

be installed directly in Stata with the command ssc install ivcrc. Alternatively, the latest

version of the module can be downloaded from the GitHub repository https://github.com/

a-torgovitsky/ivcrc. The code (ivcrc.ado) and the help file (ivcrc.sthlp) can be down-

loaded from the repository and placed in the personal ado directory, as described in the Stata FAQ:

https://www.stata.com/support/faqs/programming/personal-ado-directory/.
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The syntax for the ivcrc module is

ivcrc depvar [varlist 1] (varlist edg = varlist 2) [if] [in] [, options]

In terms of the IV model discussed in Section 2, depvar is Y , varlist1 consists of the components in

Z1, varlistedg are the basic endogenous variable components of X, and varlist2 are the components in

Z2. The required components of the syntax are depvar, varlist2, and varlistedg, while the remaining

terms in brackets are optional.

The module allows for the options shown in Table 1. The dendog option allows the user

to specify a list of endogenous variables that should be treated as derived (rather than basic),

with the implications for implementation discussed in Section 2. The bootstrap option controls

the calculation of standard errors and confidence intervals. Note that ivcrc does not compute

these by default, because the bootstrap procedure can be computationally intensive. The kernel

and bandwidth options allow the user to change the kernel function K and bandwidth h used to

compute the weights in (5). If the input for bandwidth is a list of numbers (separated by commas),

then ivcrc will compute different estimates for each bandwidth. The computational efficiency

of specifying several bandwidths at once is especially useful when calling bootstrap for standard

errors and confidence intervals. The ranks option controls the degree of accuracy for approximating

the integral in (9).

The average option determines the set R over which the local estimates β̂(r) are averaged and

controls how this averaging is implemented. For example, average(.1(0).3) sets R = [.1, .3] and

uses the empirical mean to evaluate the integral in (10). The module interprets a grid step of 0 as

a request for computing β̂R using the sample averaging formula (6) that does not use knowledge of

the distribution of R. Alternatively, specifying average(.1(.01).3) sets R = [.1, .3] and uses grid

steps of .01 to numerically evaluate the integral. Multiple non-overlapping sets can be specified

by adding commas. If the report suboption is given, then estimates on each set will be reported

separately together with the overall estimate. For example, average(.1(0).3, .5(0).8, report)

would report the estimate of βR just discussed, along with another empirical average estimate for

R = [.5, .8]. The grid method supports the report suboption as well.

There are two situations in which the module will always use (6) instead of attempting to

numerically integrate (10). The first is when there is more than one basic endogenous variable, in

which case R is a vector with a joint distribution that is not known a priori and (10) is not valid. If

a user specifies a list of subsets average(lb1(g1)ub1,..., lbN(gN)ubN) when there are multiple

basic endogenous variables, the module interprets each subset lbn(gn)ubn as belonging to the

nth endogenous variable in order of appearance in varlistedg. Due to the difficulty of specifying

sets in higher dimensions, more general multidimensional subset estimates may be obtained either

by permuting this syntax, or by storing the local estimates β̂(r) using the savecoef option and

subsequently computing any desired subset average. This is not essential to the method, but
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Table 1: Options for ivcrc

Option Description

dendog(varlist ) Specify derived endogenous variables.

bootstrap() Bootstrap confidence intervals and standard errors;
default setting is no standard errors. Specify typical
bootstrap options in (), e.g. reps(#) or
cluster(varlist ). Access additional bootstrap
statistics via estat bootstrap.

kernel(string ) Choose alternative kernel functions; default is the
Epanechnikov kernel. Other options: uniform, triangle,
biweight, triweight, cosine, or gaussian.

bandwidth(numlist ) Bandwidth of kernel; default is the rule-of-thumb. If
multiple (comma separated) values are specified,
estimates for each bandwidth are reported. Sub-option:
together with varcoef, specify the bandwidth for a
varying coefficients model.

ranks(integer ) Use ( 1
integer , ..., 1−

1
integer ) evenly spaced quantiles for

computing the conditional rank statistic; default is 50.

average(numlist [, report]) Options for numerical integration, with number list
syntax: lb(g)ub. Specify average(lb(0)ub) to use the
sample average method; default is average(0(0)1).
Specify non-zero values of g to use the grid method,
e.g. average(.01(.01).99) to numerically integrate
over the grid (.01, .02, ..., .99). The space of integration
may be comprised of non-overlapping ascending subsets
by specifying comma separated lists. Sub-option:
specifying average(lb1(g1)ub1,..., lbN(gN)ubN,

report) returns estimates for each subset as well as
estimates over their union. Sub-option: together with
varcoef, specify the support for kernel weights in a
varying coefficients model.

generate(varname [, replace]) Save the conditional rank estimates to varname in the
working dataset; this option is ignored when
bootstrapping.

userank(varname ) Use varname as the conditional rank statistic,
bypassing rank estimation.

savecoef(filename ) Creates a comma delimited (csv) dataset of the local
rank-specific coefficient estimates, saved to filename.

varcoef(varlist ) Estimate a varying coefficients model, in which
coefficients are conditioned on covariates specified in
varlist as an alternative to conditioning on the ranks of
the basic endogenous variables varlistedg. Options
average and bandwidth are required with varcoef

noconstant Suppress the constant term of the model.
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allowing for more general specifications would complicate the syntax significantly without providing

much in the way of useful flexibility.

The second case in which ivcrc only uses the empirical average (6) is when the varcoef option

is called. Passing varcoef(varlist ) skips the estimation of R̂i and uses the variables in varlist in

its place. Since the density of these variables is generally not known a priori, (10) may not be true,

so (6) is used. The average in (6) can still be taken over some specified subset R, and such a set is

still specified using the average(lb(0)ub) syntax. Note that using both the (varlistedg = varlist2)

syntax and passing varcoef as an option will generate an error.

5 Using ivcrc to Estimate the Returns to Schooling

In this section, we use the ivcrc module to estimate the returns to schooling. Our discussion

builds off of Card (1994, 2001) and Heckman and Vytlacil (1998), who note that a simple model of

optimal schooling decisions (such as Becker 1975) would generate a CRC model like (1) or (7). In

the notation of (7), Y would be a labor market outcome (e.g., wages) and X would be a measure

of educational attainment (e.g., years of completed schooling). There are several reasons to expect

confounding factors that make the direct relationship between X and Y a poor indicator of the

causal effect. Some of these determinants, like family background characteristics, can be observed

in data and controlled for. However, the fact that individuals have some choice over their education

also suggests that some important confounding factors are inherently unobservable.

Instrumental variable strategies have been widely used to tackle this self-selection problem.

Some instruments that have been used are compulsory schooling laws (Angrist and Krueger 1991;

Oreopoulos 2006), the distance a teenager lives from a college (Card 1993; Mountjoy 2019), and

local labor market conditions (Cameron and Heckman 1998).4 The argument underlying these

strategies is that the proposed instrument affects an individual’s educational attainment by shifting

the costs and/or benefits involved, but does not itself directly affect labor market outcomes and

is uncorrelated with any other factors that do. The CRC model discussed in Section 2 allows for

the effect that an instrument has on an individual’s educational choice to be correlated with their

returns to schooling. So, for example, those whose education choice is affected by distance might

have systematically different returns to schooling than those whose choice is not.

Our analysis uses the same data and regression specification as Card (1993) and Kling (2001),

which is available as part of Cameron and Trivedi’s (2009) textbook on Stata for Microeconometrics.

The data is an extract from the National Longitudinal Survey of Young Men (NLSYM) that consists

of 3,010 men who were aged 24–34 in 1966. The extract contains variables from both 1966 and a

follow-up survey in 1976. The data, as well as the code for the following analysis, is available at

https://github.com/a-torgovitsky/ivcrc.

4 See also Carneiro, Heckman, and Vytlacil (2011) for an IV strategy that uses multiple types of instruments.

12

https://github.com/a-torgovitsky/ivcrc


The outcome variable is wage76, the individual’s log hourly wage in 1976. The primary en-

dogenous variable of interest is grade76, the individual’s highest level of schooling measured in

years. The regression includes two additional endogenous variables: years of potential work ex-

perience in 1976 exp76, and squared experience expsq76. Potential work experience is defined as

exp76 = age76−grade76−6, following the standard convention for Mincer equations (Mincer 1958,

1974). To avoid perfect collinearity, we follow the literature by including experience in the outcome

equation and age in the first stage equation. Since potential experience is a derived endogenous

variable, this convention also allows us to illustrate the module’s dendog option.

We include a set of sociodemographic controls for race (black), parent’s education (daded,

momed, famed1-8), family structure at age 14 (momdad14, sinmom14), and geographic region (smsa66,

smsa76, reg1-reg8).5 While not essential to demonstrating the usage of the ivcrc module, the

inclusion of these controls shows that the semiparametric estimator does not suffer from the curse of

dimensionality. Including these controls also replicates the regression specification in Card (1993)

and Kling (2001), which allows us to compare the ivcrc module to popular alternative estimators

like 2SLS (e.g., ivregress).

We begin by estimating a linear regression of log wages on schooling, potential work experience,

and demographic control variables. This type of regression is often referred to as a Mincer equation;

see Heckman, Lochner, and Todd (2006a) for an in-depth discussion. The estimates indicate that

an additional year of schooling is associated with approximately a 7.25 percent increase in 1976

wages:

. reg wage76 grade76 exp76 expsq76 ‘ControlVars’, robust

Linear regression Number of obs = 3,010

F(27, 2982) = 52.45

Prob > F = 0.0000

R-squared = 0.3040

Root MSE = .37191

------------------------------------------------------------------------------

| Robust

wage76 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

grade76 | .0725423 .0038685 18.75 0.000 .0649572 .0801275

...

As discussed above, education is a choice variable that is likely correlated with latent factors that

affect wages, even after controlling for sociodemographic characteristics. Card (1993) used an

5 For readability, we collect these into a local variable ControlVars in the do file for this exercise.
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indicator for living (at age 14) in a county with a four-year college as an instrument for education.

Proximity to a four-year college is associated with about a third of a grade higher educational

attainment:

. reg grade76 col4 ‘ControlVars’, robust

Linear regression Number of obs = 3,010

F(25, 2984) = 53.50

Prob > F = 0.0000

R-squared = 0.2937

Root MSE = 2.2591

------------------------------------------------------------------------------

| Robust

grade76 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

col4 | .3669905 .1023706 3.58 0.000 .1662663 .5677147

...

In order for college proximity to be a valid instrument, it should have no direct effect on wages

in 1976 and also be uncorrelated with other factors that are correlated with wages or schooling

decisions after conditioning on observables. There are several reasons to be suspect of this require-

ment; see for example Kling (2001), and see Mountjoy (2019) for a modern discussion with richer

geographic data. Here we simply compare estimators and take the validity of the college proximity

instrument for granted.

The 2SLS estimator suggests that an additional year of schooling causes about a 13.33 percent

increase in 1976 wages:

. ivregress 2sls wage76 (grade76 exp76 expsq76 = col4 age76 agesq76) ///

> ‘ControlVars’, perfect

Instrumental variables (2SLS) regression Number of obs = 3,010

Wald chi2(27) = 1007.25

Prob > chi2 = 0.0000

R-squared = 0.2030

Root MSE = .39614

------------------------------------------------------------------------------

wage76 | Coef. Std. Err. z P>|z| [95% Conf. Interval]
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-------------+----------------------------------------------------------------

grade76 | .1333034 .0493359 2.70 0.007 .0366068 .2300001

...

This interpretation presumes that the causal effect of schooling on wages is constant. It yields

the potentially puzzling conclusion that the raw association between education and wages actually

substantially understates the causal effect of education on wages. As Card (2001) documents, this

conclusion about the returns to schooling is actually fairly common across diverse studies that use

a variety of IV strategies and data sources. One explanation proposed by Card (2001) is that this

arises from a failure to account for heterogeneity in the causal effect of schooling on wages.

We can use the ivcrc module to assess this explanation. The syntax is similar to that for the

IV estimator:

. ivcrc wage76 (grade76 = col4 age76 agesq76) ‘ControlVars’, ///

> dendog(exp76 expsq76)

(default settings do not compute standard errors, see bootstrap() option)

(estimating the conditional rank of grade76)

(estimating rule-of-thumb bandwidth)

(estimating beta(r) at each r[i] rank in the sample)

IVCRC Number of obs = 3,010

------------------------------------------------------------------------------

wage76 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

grade76 | .0852767 . . . . .

...

------------------------------------------------------------------------------

Note: Average coefficients over R = [0,1] rank subset; Bandwidth = .0370327

We treat potential experience, exp76, as a derived endogenous variable here because it is defined as

a deterministic function of grade76 and age76. Whereas the coefficient on grade76 reported by the

standard linear regression estimator implemented by ivregress will estimate a difficult-to-interpret

quantity like (3), the coefficient on grade76 produces an estimator of the average causal effect of

a one year increase in grade76. The causal effect estimated here of 8.53 percent is substantially

lower than the linear IV estimate of 13.33 percent. This supports Card’s (2001) reasoning if, as

he argues, the usual linear IV estimator places more weight on individuals with higher returns to

schooling. The ivcrc estimate is also somewhat larger than the linear regression coefficient 0.0725.

We now demonstrate some of the options for ivcrc by evaluating the statistical significance

and robustness of the above ATE estimate. First, we compute standard errors, which tends to be

time-consuming due to the necessity of using the bootstrap. The syntax and results are:
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. ivcrc wage76 (grade76 = col4 age76 agesq76) ‘ControlVars’, ///

> dendog(exp76 expsq76) bootstrap(reps(100) seed(5282020))

(estimating rule-of-thumb bandwidth)

(running _ivcrc_estimator on estimation sample)

Bootstrap replications (100)

----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5

.................................................. 50

.................................................. 100

IVCRC Number of obs = 3,010

Replications = 100

------------------------------------------------------------------------------

wage76 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

grade76 | .0852767 .0267166 3.19 0.001 .0329131 .1376403

...

------------------------------------------------------------------------------

Note: Average coefficients over R = [0,1] rank subset; Bandwidth = .0370327

The confidence interval here is a bit wider than for the linear regression estimator, although sub-

stantially narrower than for the usual linear IV estimator. The textbook IV estimator and the

ivcrc estimates are constructed under non-nested assumptions, so this by itself is not unexpected.

However, since the bandwidth controls a bias-variance trade-off in the ivcrc estimator, it does sug-

gest that we may want to explore bandwidths other than the default rule-of-thumb (ĥROT = 0.037)

in order to guard against potential bias due to oversmoothing. So next we evaluate the point

estimates at several specified bandwidths:

. ivcrc wage76 (grade76 = col4 age76 agesq76) ‘ControlVars’, ///

> dendog(exp76 expsq76) bandwidth(.025, .05, .075)

(default settings do not compute standard errors, see bootstrap() option)

(estimating the conditional rank of grade76)

(estimating beta(r) at each r[i] rank in the sample)

IVCRC Number of obs = 3,010

------------------------------------------------------------------------------

wage76 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

grade76 | .0869784 . . . . .
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...

------------------------------------------------------------------------------

Note: Average coefficients over R = [0,1] rank subset; Bandwidth = .025

------------------------------------------------------------------------------

grade76 | .0807563 . . . . .

...

------------------------------------------------------------------------------

Note: Average coefficients over R = [0,1] rank subset; Bandwidth = .05

------------------------------------------------------------------------------

grade76 | .0779116 . . . . .

...

------------------------------------------------------------------------------

Note: Average coefficients over R = [0,1] rank subset; Bandwidth = .075

The estimate is relatively stable over different bandwidths, but does decline somewhat as the local

estimates β̂(r) are computed using larger neighborhoods of r. Obtaining standard errors and

confidence intervals using the smallest bandwidth in this list,

. ivcrc wage76 (grade76 = col4 age76 agesq76) ‘ControlVars’, ///

> dendog(exp76 expsq76) bootstrap(reps(100) seed(5282020)) bandwidth(.025)

(running _ivcrc_estimator on estimation sample)

Bootstrap replications (100)

----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5

.................................................. 50

.................................................. 100

IVCRC Number of obs = 3,010

Replications = 100

------------------------------------------------------------------------------

wage76 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

grade76 | .0869784 .029612 2.94 0.003 .0289401 .1450168

...

------------------------------------------------------------------------------

Note: Average coefficients over R = [0,1] rank subset; Bandwidth = .025

we find a slightly larger standard error and a wider confidence interval, as anticipated. Though

more comparable to the standard error and confidence interval from the linear IV model, the ivcrc

standard error remains roughly 1.5 times smaller even at this smaller bandwidth.
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The number of quantiles used to approximate the integral in (9) and the functional form of the

kernel weights K could in principle also impact the ivcrc estimates. Quadrupling the number of

quantiles from its default of 50 while carrying forward the smaller bandwidth from above,

. ivcrc wage76 (grade76 = col4 age76 agesq76) ‘ControlVars’, ///

> dendog(exp76 expsq76) bootstrap(reps(100) seed(5282020)) bandwidth(.025) ///

> ranks(200)

(running _ivcrc_estimator on estimation sample)

Bootstrap replications (100)

----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5

.................................................. 50

.................................................. 100

IVCRC Number of obs = 3,010

Replications = 100

------------------------------------------------------------------------------

wage76 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

grade76 | .078291 .0320328 2.44 0.015 .0155079 .1410741

...

------------------------------------------------------------------------------

Note: Average coefficients over R = [0,1] rank subset; Bandwidth = .025

we find that the results are not very sensitive to how finely the integral in (8) is approximated.

Swapping a uniform kernel for the (default) Epanechnikov kernel, while carrying forward a smaller

bandwidth and more accurate rank estimation from above,

. ivcrc wage76 (grade76 = col4 age76 agesq76) ‘ControlVars’, ///

> dendog(exp76 expsq76) bootstrap(reps(100) seed(5282020)) bandwidth(.025) ///

> ranks(200) kernel(uniform)

(running _ivcrc_estimator on estimation sample)

Bootstrap replications (100)

----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5

.................................................. 50

.................................................. 100

IVCRC Number of obs = 3,010
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Replications = 100

------------------------------------------------------------------------------

wage76 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

grade76 | .0780691 .0302556 2.58 0.010 .0187693 .137369

...

------------------------------------------------------------------------------

Note: Average coefficients over R = [0,1] rank subset; Bandwidth = .025

we find that the results are also not sensitive to the functional form of the kernel, in concordance

with the usual folklore for nonparametric kernel regression.

One interesting way to explore both the robustness and potential explanations for our finding

is to change the set R over which the average is being taken. By default, ivcrc averages over

all estimated conditional ranks (R̂i) directly as in (6). Alternatively, if we are concerned about

results being driven by outliers in the conditional distribution of education, we can specify R to

be [.05, .95]. Trimming the distribution in this way, while maintaining the smaller bandwidth and

more accurate rank estimation from above,

. ivcrc wage76 (grade76 = col4 age76 agesq76) ‘ControlVars’, ///

> dendog(exp76 expsq76) bootstrap(reps(100) seed(5282020)) bandwidth(.025) ///

> ranks(200) average(.05(0).95)

(running _ivcrc_estimator on estimation sample)

Bootstrap replications (100)

----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5

.................................................. 50

.................................................. 100

IVCRC Number of obs = 3,010

Replications = 100

------------------------------------------------------------------------------

wage76 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

grade76 | .0735619 .0345893 2.13 0.033 .0057681 .1413558

...

------------------------------------------------------------------------------

Note: Average coefficients over R = [.05,.95] rank subset; Bandwidth = .025

we obtain slightly lower estimated returns to education and a slightly larger standard error, but

overall similar results to the estimates which used the full observed conditional distribution of
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education. When there is a single basic endogenous variable, as in the present application, another

check on the estimates is to use numerical integration based on (10). Specifying an equally spaced

grid with steps of .01 over the outlier-trimmed region [.05, .95] from above,

. ivcrc wage76 (grade76 = col4 age76 agesq76) ‘ControlVars’, ///

> dendog(exp76 expsq76) bootstrap(reps(100) seed(5282020)) bandwidth(.025) ///

> ranks(200) average(.05(.01).95)

(running _ivcrc_estimator on estimation sample)

Bootstrap replications (100)

----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5

.................................................. 50

.................................................. 100

IVCRC Number of obs = 3,010

Replications = 100

------------------------------------------------------------------------------

wage76 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

grade76 | .0730978 .0341265 2.14 0.032 .0062111 .1399845

...

------------------------------------------------------------------------------

Note: Average coefficients over R = [.05,.95] rank subset; Bandwidth = .025

we obtain estimates that are nearly identical to those obtained using the default sample average

method, (6).

We can also consider smaller sets of R to explore heterogeneity in the return to schooling. For

example, an estimate for individuals in the lower half of the education distribution is:

. ivcrc wage76 (grade76 = col4 age76 agesq76) ‘ControlVars’, ///

> dendog(exp76 expsq76) bootstrap(reps(100) seed(5282020)) bandwidth(.025) ///

> ranks(200) average(0(0).5)

(running _ivcrc_estimator on estimation sample)

Bootstrap replications (100)

----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5

.................................................. 50

.................................................. 100
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IVCRC Number of obs = 3,010

Replications = 100

------------------------------------------------------------------------------

wage76 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

grade76 | .1038839 .0531316 1.96 0.051 -.0002521 .2080199

...

------------------------------------------------------------------------------

Note: Average coefficients over R = [0,.5] rank subset; Bandwidth = .025

This suggests that individuals with lower schooling have higher returns to schooling. Specifying a

set for each quartile of the education distribution reveals a pattern that supports this explanation,

while indicating potentially more nuance,

. ivcrc wage76 (grade76 = col4 age76 agesq76) ‘ControlVars’, ///

> dendog(exp76 expsq76) bootstrap(reps(100) seed(5282020)) bandwidth(.025) ///

> ranks(200) average(0(0).25, .2501(0).5, .5001(0).75, .7501(0)1, report)

(running _ivcrc_estimator on estimation sample)

Bootstrap replications (100)

----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5

.................................................. 50

.................................................. 100

IVCRC Number of obs = 3,010

Replications = 100

------------------------------------------------------------------------------

wage76 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

grade76 | .078291 .0320328 2.44 0.015 .0155079 .1410741

...

------------------------------------------------------------------------------

Note: Average coefficients over R = [0,1] rank subset; Bandwidth = .025

------------------------------------------------------------------------------

grade76 | .0651947 .0616646 1.06 0.290 -.0556657 .1860551

...

------------------------------------------------------------------------------

Note: Average coefficients over R = [0,.25] rank subset; Bandwidth = .025

------------------------------------------------------------------------------
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grade76 | .1418537 .1006071 1.41 0.159 -.0553327 .33904

...

------------------------------------------------------------------------------

Note: Average coefficients over R = [.2501,.5] rank subset; Bandwidth = .025

------------------------------------------------------------------------------

grade76 | .0264401 .066345 0.40 0.690 -.1035938 .1564739

...

------------------------------------------------------------------------------

Note: Average coefficients over R = [.5001,.75] rank subset; Bandwidth = .025

------------------------------------------------------------------------------

grade76 | .0787306 .0512649 1.54 0.125 -.0217468 .1792081

...

------------------------------------------------------------------------------

Note: Average coefficients over R = [.7501,1] rank subset; Bandwidth = .025

The module first displays the estimate taken over the union of the given sets, in this case the overall

sample average. Then ivcrc reports the estimates over each subset that we specified in average.

We find that the estimates of the returns to schooling vary across the education distribution, the

second quartile exhibiting large returns that are comparable to the linear IV estimate. However,

the estimates are less precisely estimated than the average return using the entire sample, which

reflects the fact that each subset only uses approximately one fourth of the number of effective

observations.

We conclude with an illustration of varying coefficient estimation with ivcrc. Cai (2010)

suggests that the relationship between education and wages might be increasing in work experience.

We can explore this hypothesis using the varcoef option, which allows the linear coefficients to

be nonparametric functions of experience. To use varcoef we must also specify the average

option. To obtain the support points of experience for average, we first quietly calculate summary

statistics. Then we call varcoef using the savecoef option to store the experience-conditioned

coefficient estimates. Loading the dataset stored with savecoef, we finally plot our estimates of

the coefficient on education as a function of experience.

. qui sum exp76

. ivcrc wage76 grade76 ‘ControlVars’ , ///

> varcoef(exp76) bandwidth(4) ///

> average(‘r(min)’(0)‘r(max)’) savecoef(varcoef_exp)

(default settings do not compute standard errors, see bootstrap() option)

(estimating beta(exp76) at each exp76[i] in the sample)

IVCRC Number of obs = 3,010
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------------------------------------------------------------------------------

wage76 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

grade76 | .0602117 . . . . .

...

------------------------------------------------------------------------------

Note: Average coefficients over = [0,23]; Bandwidth = 4

.

. import delimited "varcoef_exp.csv", colrange(2:3) clear

(2 vars, 3,010 obs)

...

. local plotopt title("") scheme(s2mono) graphregion(color(gs16) ilc(gs16)) ///

> plotregion(lc(gs0)) ylabel(, angle(0) labsize(4)) legend(off) ///

> xtitle("Years of Experience", size(4)) ytitle("Coefficient on Education", size(4))

. twoway (scatter grade76 exp76, msize(small) mcolor(black)) ///

> (lpoly grade76 exp76 , degree(0) bwidth(1) lcolor(black) ‘plotopt’)

Figure 1: Varying Coefficient Estimation – Coefficients as a Function of Experience
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The coefficient on education is positive for all levels of experience, and averages about 6 percent

per year of education across experience levels. The coefficient decreases as experience increases for

both small and large values of experience. However, as suggested by Cai (2010), the coefficient on

education is increasing over the 10th to 90th percentiles (4 to 15 years) of experience.
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6 Conclusion

In this paper we have discussed the CRC model, which is a parsimonious IV model that explicitly

incorporates heterogeneous treatment effects. The ivcrc module for Stata implements an estimator

for the CRC model. The estimator can be used to carefully analyze heterogeneous treatment effects

in a way that the usual linear estimator implemented by ivregress cannot. Because the estimator

is based on averaging conditional linear regressions, it scales well and incorporates covariates easily,

making it attractive from a practical perspective.

There are a few important limitations to the estimator that are worth mentioning both as

caveats, and as directions for future research. First, the conditions described in Section 2.3 to

construct the control function, R, from the instrument, Z, require the endogenous variable, X,

to be continuously distributed. The extent to which these methods fail for discrete endogenous

variables is an interesting theoretical question that may have important implications for practice.

Second, the ivcrc module implements a rule-of-thumb bandwidth. There may exist other, superior

methods for automated bandwidth selection. Third, defining, detecting, and correcting for weak

instruments is an unexplored topic for the CRC model.
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